

Datenblatt

Differenzdruck-Überströmregler (PN 16, 25, 40) AFPA 2/VFG 22(1)

Beschreibung

virtus.danfoss.com

Der Regler ist ein selbsttätiger Differenzdruck-Überströmregler, der überwiegend für den Einsatz in Fernwärme- bzw. Fernkältesystemen vorgesehen ist. Der Regler ist drucklos geschlossen und öffnet bei steigendem Differenzdruck. Der Regler verfügt über ein Regelventil, einen Druckantrieb mit Membran und eine Feder zur Druckeinstellung.

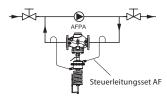
Darüber hinaus sind zwei Ventilausführungen erhältlich:

- VFG 22 mit metallisch dichtendem Kegel
- VFG 221 mit weichdichtendem Kegel

Zusammen mit dem intelligenten elektrischen Stellantrieb AMEi 6 (iNet) stehen intelligente Optimierungsfunktionen zur Verfügung:

 AMEi 6 iNET-Stellantrieb für intelligenten Netzabgleich, ermöglicht die Ferneinstellung des Differenzdruckes (Δp)

Wesentliche Daten:


- DN 65–250
- k_{VS} 60–800 m³/h
- PN 16, 25, 40*
- * PN 40 erhältlich in Q1-2022 • Einstellbereich:
- Einstellbereich:
 0,1-0,4 bar / 0,2-0,8 bar / 0,3(0,4)-1,5 bar / 0,5(1)-3 bar / 1,5-6 bar
- · Temperatur:
 - Zirkulationswasser/glykolhaltiges
 Wasser bis max. 30 %: 2 ... 150 °C
- Anschlüsse:
- Flansch

Bestelldaten

Beispiel 1: Differenzdruckregler, Einbau im Rücklauf, DN 65, k_{ys} 60 m³/h, PN 16, metallische Dichtung, Einstellbereich 1–3 bar, T_{max} 150 °C, Flansch

- 1× VFG 22 DN 65 Ventil Bestellnr: 065B5500
- 1× AFPA 2 Stellantrieb Bestellnr: 003G5691
- 2× Steuerleitungsset AF Bestellnr: **003G1391**

Die Produkte werden separat geliefert.

VFG 22 Ventil (metallisch dichtender Kegel)

Abbildung	DN	k _{vs}	Anschlüsse	T _{max.}	Bestellnummer			
Abbildung	(mm)	(m ³ /h)	Anschlusse	(°C)	PN 16	PN 25	PN 40*	
	65 60			065B5500	065B5507	065B5514		
	80	80	Flansche nach EN 1092-1		065B5501	065B5508	065B5515	
M = 74	100	160			065B5502	065B5509	065B5516	
	125	250		150	065B5503	065B5510	065B5517	
	150	380			065B5504	065B5511	065B5518	
U	200	650			065B5505	065B5512	065B5519	
	250 800		065B5506	065B5513	065B5520			

VFG 221 Ventil (weichdichtender Kegel)

0	Abbildung $\begin{pmatrix} \mathbf{DN} & \mathbf{k_{vs}} \\ (mm) & (m^3/h) \end{pmatrix}$ Anschlüsse		T _{max} .	Bestellnummer			
Abbildung			Alischiusse	(°C)	PN 16	PN 25	PN 40*
	65	60			065B5521	065B5528	065B5535
	80	80		150	065B5522	065B5529	065B5536
M - 71	100	160	Flansche nach EN 1092-1		065B5523	065B5530	065B5537
	125	250			065B5524	065B5531	065B5538
- -	150	380			065B5525	065B5532	065B5539
l u	200	650			065B5526	065B5533	065B5540
	250	800			065B5527	065B5534	065B5541

^{*}PN 40 erhältlich in O1-2022

Bestellung (Fortsetzung)

AFPA 2 Stellantrieb

Abbildung	Einstellbereich	Kombinationsmöglichkeiten nach DN							Druck- antriebsgröße	Federfarbe	Bestellnummer	
_	(bar)	65	80	100	125	150	200	250	(cm²)		PN 16	PN 40*
#	1,5–6	✓	✓	✓	✓	-	-	-	80	Rot	003G5689	003G5696
	0,5-3	✓	✓	✓	✓	-	_	-	80	Gelb	003G5690	003G5697
	1–3	✓	✓	✓	✓	✓	✓	✓	160	Rot	003G5691	003G5698
	0,3-1,5	✓	✓	✓	-	-	-	-	160	Gelb	003G5692	003G5699
	0,4-1,5	-	-	-	✓	✓	✓	✓	320	Rot	003G5693	003G5700
	0,2-0,8	✓	✓	✓	✓	✓	✓	✓	320	Gelb	003G5694	003G5701
	0,1-0,4	✓	✓	✓	✓	✓	✓	✓	640	Gelb	003G5695	003G5702

Zubehör

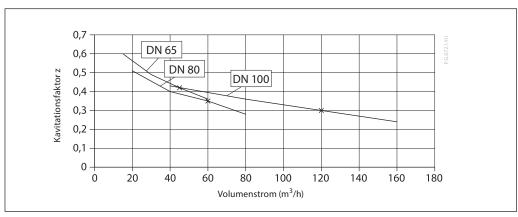
Zubenor				
Abbildung	Typbezeichnung	Beschreibung	Anschlüsse	Bestellnummer
0.0	Steuerleitungsset AF	– 1× Kupferrohr Ø10 × 1 × 1500 mm – 1 × Klemmverbinder zum Anschließen der Steuerleitung an die Rohrleitung (G ¾) – 2 × Hülse	-	003G1391
	Klemmringverschraubung 1)	Für Steuerleitungsanschlüsse Ø10 zum Regler	G 1/4	003G1468
	Absperrventil	Für Steuerleitung Ø10	-	003G1401
	Statisches Drosselventil			065B2909
	Dynamisches Drosselventil ²⁾	Für Steuerleitung Ø 10/ Anschluss an Druckantrieb	G 1/4	003G1771
	Adapter	Neuer AFPA 2– altes VFG	DN 15-250	003G1780
	AMEi 6 iNET elek. Stellantrieb 230 V	Intelligenter Δp-Stellantrieb mit iNET -Funktion, ermöglicht die	_	082G4302
inet inet	AMEi 6 i NET elek. Stellantrieb 24 V	Ferneinstellung des Differenzdruckes (Δp)	-	082G4303

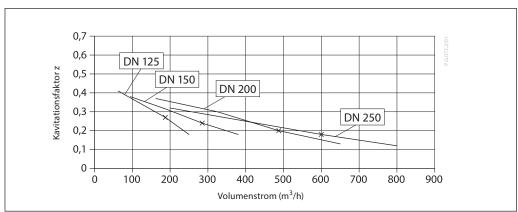
¹⁾ Besteht aus Gewindenippel, Klemmring und Mutter ²⁾ Lieferbar ab 2022

Ersatzteile

Abbildung	Тур	k _{vs} (m³/h)	PN	DN	Bestellnummer
		60		65	003G1800
		80		80	003G1801
		160		100	003G1802
	Innengarniturmetallisch dichtend VFG/Q/U 22	250		125	003G1803
	VFG/Q/0 22	380]	150	003G1804
1		650	16/25/40	200	003G1805
		800		250	003G1806
	Innengarniturweichdichtend VFG/Q/U 221	60		65	003G1807
		80		80	003G1808
		160		100	003G1809
		250		125	003G1810
	VI G/Q/ 0 221	380		150	003G1811
		650		200	003G1812
		800		250	003G1813
NATION AND AND AND AND AND AND AND AND AND AN	D	D 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
	Druckstopfbuchs		150-250	003G1731	

2 | Al376375830153de-000104 © Danfoss | 2021.07

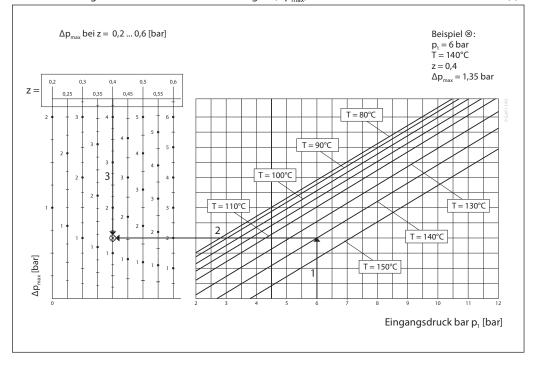

Technische Daten


Ventil

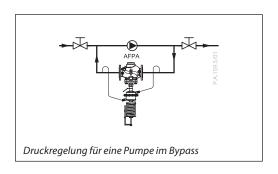
Nennweite			80	100	125	150	200	250		
k _{vs} -Wert m³/h			80	160	250	380	650	800		
VFG 22			≤ (),03			≤ 0,05			
VFG 221					≤ 0,01					
	PN				16, 25, 40					
PN 16		1	16	1	_	12		0		
PN 25, 40	Dar	2	20] '	5	12	10			
				Kar	mmer entlas	stet				
		Zirkulationswasser/glykolhaltiges Wasser mit bis zu 30 % Glykolanteil								
		Min. 7, max. 10								
VFG 22(221)	°C				2150					
		Flansch								
PN 16		Grauguss EN-GJL-250 (GG-25)								
PN 25		Sphäroguss EN-GJS-400 (GGG-40.3)								
PN 40		Stahlguss GP240GH (GS-C 25)								
Ventilsitz			Rostfreier Edelstahl, Mat Nr. 1.4021							
Ventilkegel			Rostfreier Edelstahl, Mat Nr. 1.4021							
VFG 22	FG 22		Metall							
VFG 221		EPDM								
	VFG 221 PN 16 PN 25, 40 VFG 22(221) PN 16 PN 25 PN 40 VFG 22	VFG 22 VFG 221 PN PN 16 PN 25, 40 VFG 22(221) PN 16 PN 25 PN 40 VFG 22	M³/h 60 VFG 22 VFG 221 PN PN 16 PN 25, 40 Zirku VFG 22(221) °C PN 16 PN 25 PN 40 VFG 22	m³/h 60 80 VFG 22 ≤ 0 VFG 221 PN PN 16 bar 20 Zirkulationswass VFG 22(221)	m³/h 60 80 160 VFG 22	m³/h 60 80 160 250 VFG 22	May	Marcological Points Marcological Points		

AFPA 2 Druckantrieb

Druckantriebsgröße	cm ²	80		160		320		640		
Max. Betriebsdruck	bar					16, 40				
Diff. Druckeinstellbereiche	l	Rot	Gelb	Rot	Gelb	Rot	Gelb	Gelb		
und Federfarben	bar	1,5-6	0,5-3	1–3	0,3-1,5	0,4-1,5	0,2-0,8	0,1-0,4		
Für Ventil DN		65–125 65–250 65–100 125–250 65–250						250		
Werkstoffe										
Druckantriebsgehäuse	Stahl, W Nr. 1.0345, verzinkt									
Stellmembrane	EPDM									

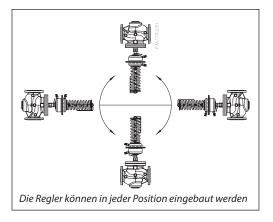


© Danfoss | 2021.07 Al376375830153de-000104 | 3

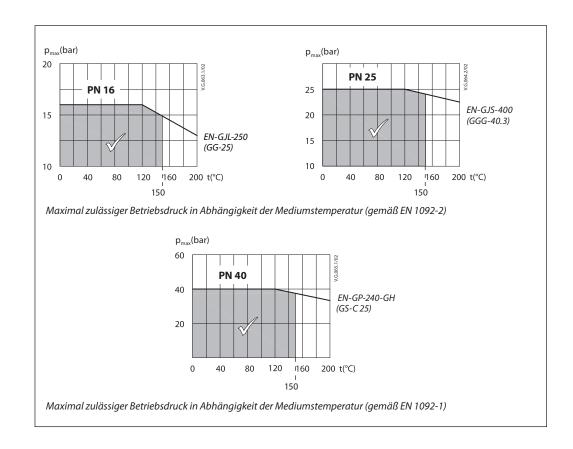


Wirkbereich

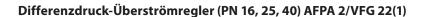
Maximal zulässiger Differenzdruck über dem Regler (Δp_{max}) bei verschiedenen Kavitationsfaktoren (z)


Anwendungsbeispiele

4 | Al376375830153de-000104 © Danfoss | 2021.07



Einbaulage



Druck-Temperatur-Diagramm

Der Arbeitsbereich liegt unterhalb der P-T-Linie und endet für jedes Ventil bei T_{max}

© Danfoss | 2021.07 Al376375830153de-000104 | 5

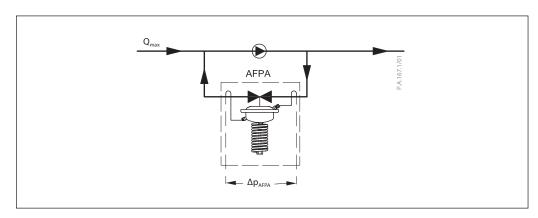
Auslegung

Beispiel:

Die Anwendung erfordert einen maximalen Volumenstrom von 60 m³/h. Der über den Regler verfügbare minimale Differenzdruck beträgt 1,3 bar. Der geforderte Öffnungsdruck beträgt 2 bar.

Gegeben:

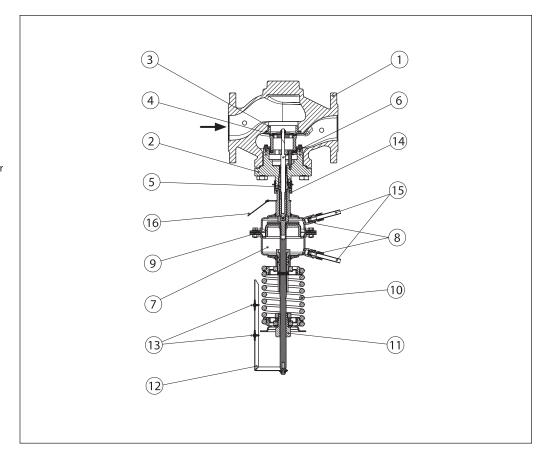
$$Q_{max}$$
 = 60 m³/h
 Δp_{AFPA} = 1,3 bar


k,-Wert berechnen:

$$k_v = \frac{Q_{max}}{\sqrt{\Delta p_{AFPA}}} = \frac{60}{\sqrt{1,3}} = 52.6 \text{ m}^3/\text{h}$$

Der nächst größere k_{vs} bis 52,6 m³/h beträgt 60 m³/h und ergibt VFG 22 DN 65. Der verfügbare Einstellbereich zur Regelung von 2 bar beträgt 0,5-3 bar und ist für DN 65 verfügbar.

Lösung:


AFPA 2 0,5–3 bar VFG 22 (221) DN 65 k_{vs} 60 m³/h

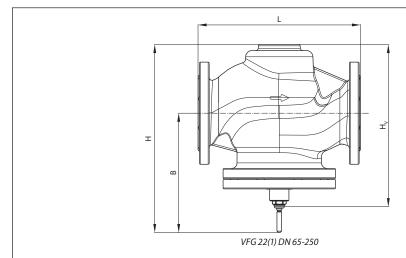
Aufbau

- 1. Ventilgehäuse
- 2. Abdeckung
- 3. Ventilsitz
- 4. Druckregeleinsatz
- 5. Druckstopfbuchse
- 6. Ventilstange
- **7.** Druckantrieb
- 8. Steuerleitungsanschluss
- 9. Membran
- **10.** Differenzdruck-Einstellfeder
- 11. Differenzdruck-Einstellmutter
- 12. Einstellskala
- 13. Einstellanzeige
- 14. Überwurfmutter
- **15.** Steuerleitung
- 16. Typenschild

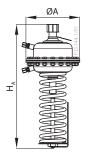
Funktion

Der Druck vor und hinter dem Regler wird über die Steuerleitungen auf die Antriebskammern übertragen und wirkt auf die Stellmembran zur Differenzdruckregelung. Der Regler ist drucklos geschlossen und öffnet bei steigendem Differenzdruck.

Einstellungen

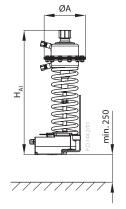

Druckeinstellung

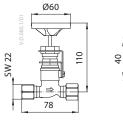
Die Druckeinstellung erfolgt durch Spannen bzw. Entspannen der Feder. Die Justierung erfolgt mittels Drehen der Einstellmutter und muss unter Verwendung einer Druckanzeige (z. B. Manometer) erfolgen.


Differenzdruck-Überströmregler (PN 16, 25, 40) AFPA 2/VFG 22(1)

Abmessungen

VFG 22, VFG 221-Ventile


DN	L	В	н	ш	Gewicht			
	_	Ь	п	H_{v}	PN 16	PN 25	PN 40	
		m		kg				
65	290	220	345	285	24	25	26	
80	310	220	345	285	29	30	32	
100	350	260	405	345	47	48	50	
125	400	260	425	365	60	62	60	
150	480	325	515	455	105	108	130	
200	600	360	605	545	204	210	260	
250	730	420	675	615	343	353	375	


AFPA 2 Druckantrieb

Größe	ØA	H _A	H _{AI}	Gewio	: ht (kg)		
(cm²)		mm		AFPA 2	AFPA 2 + AMEi 6		
80	175	512	612	9	11,5		
160	228	512	612	10	12,5		
320	295	512	612	15	17,5		
640	300	635	735	36	38,5		

Die Gesamtinstallationshöhe des Reglers (VFG 22(1) Ventil + AFPA 2 Druckantrieb) ist die Summe aus $H_{\rm V}$ und $H_{\rm A}$ ($H_{\rm Al}$)

Absperrventil

Klemmverbinder

Ø10

Danfoss GmbH, Deutschland: Climate Solutions • danfoss.de • +49 69 8088 5400 • cs@danfoss.de **Danfoss Ges.m.b.H., Österreich:** Climate Solutions • danfoss.at • +43 720548000 • cs@danfoss.at Danfoss AG, Schweiz: Climate Solutions • danfoss.ch • +41 615100019 • cs@danfoss.ch

Alle Informationen, einschließlich, aber nicht beschränkt auf Informationen zur Auswahl von Produkten, ihrer Anwendung bzw. ihrem Einsatz, zur Produktgestaltung, zum Gewicht, den Abmessungen, der Kapazität oder zu allen anderen technischen Daten von Produkten in Produkthandbüchern, Katalogbeschreibungen, Werbungen usw., die schriftlich, mündlich, elektronisch, online oder via Download erteilt werden, sind als rein informativ zu betrachten, und sind nur dann und in dem Ausmaß verbindlich, als auf diese in einem Kostenvoranschlag oder in einer Auftragsbestätigung explizit Bezug genommen wird. Danfoss übernimmt keine Verantwortung für mögliche Fehler in Katalogen, Broschüren, Videos und anderen Drucksachen. Danfoss behält sich das Recht vor, ohne vorherige Bekanntmachung Änderungen an seinen Produkten vorzunehmen. Dies gilt auch für bereits in Auftrag genommene, aber nicht gelieferte Produkte, sofern solche Anpassungen ohne substanzielle Änderungen der Form, Tauglichkeit oder Funktion des Produkts möglich sind.
Alle in dieser Publikation enthaltenen Warenzeichen sind Eigentum von Danfoss A/S oder Danfoss-Gruppenunternehmen. Danfoss und das Danfoss Logo sind Warenzeichen der Danfoss A/S. Alle Rechte vorbehalten.